28 octubre 2015

Cuerpo negro

Los cuerpos calientes emiten luz de diferentes colores en función de su temperatura. 

Los alfareros conocen la temperatura de las piezas en cocción con sólo ver el color que toma la cerámica.

Todo cuerpo emite energía en forma de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

A igualdad de temperatura, la energía emitida depende también de la naturaleza de la superficie; así, una superficie mate o negra tiene un poder emisor mayor que una superficie brillante. Así, la energía emitida por un filamento de carbón incandescente es mayor que la de un filamento de platino a la misma temperatura. La ley de Kirchhoff establece que un cuerpo que es buen emisor de energía es también buen absorbente de dicha energía. Así, los cuerpos de color negro son buenos absorbentes

El cuerpo negro imaginario de Kirchhoff era un simple recipiente oscuro con un pequeño orificio en una de sus paredes. Una vez en el interior, la radiación sufre diversas reflexiones en las paredes de la cavidad hasta que acaba siendo completamente absorbida. El agujero también actúa como emisor perfecto, puesto que las radiaciones que escapan a través de él muestran todas las longitudes de onda presentes, a esa temperatura, en el interior del recipiente.

En febrero de 1893, el físico alemán Wilhelm Wien,  no dio con la fórmula pero descubrió una sencilla relación matemática que describía el efecto del cambio de temperatura en el espectro de la radiación emitida por el cuerpo negro.

Como resultado de su estudio encontró que conforme el cuerpo negro se va calentando, el máximo del espectro de la distribución se desplaza hacia longitudes de onda más cortas. Esto significaba, algo tan revelador como que la longitud de onda del máximo de radiación multiplicada por la temperatura de un cuerpo negro es siempre una constante. Es decir, que una vez calculada la constante numérica, midiendo la longitud de onda del pico de emisión a una determinada temperatura, podía calcularse la longitud de onda máxima para cualquier otra temperatura.

Un cuerpo negro es un sistema capaz de absorber toda la radiación que le llega y que  es capaz de devolver.


Estgos conceptos se emplean para medir la temperatura del sol o de las bombillas: temperatura de color




05 octubre 2015

Ingeniería del viento o cómo no salir volando

Estos últimos días hemos sufrido fuertes vientos. Aunque estemos acostumbrados a la presencia del viento, sus efectos pueden ser diferentes a lo que esperamos.
Una variable importante, si duda, es la velocidad con que se mueve este viento. Pero… ¿Tenemos idea de cómo es esa velocidad? ¿Es mucha o es poca? ¿Qué efectos tiene?

Para hacernos una idea de cómo son esas velocidades de viento, podríamos echar mano a la siguiente tabla. Se trata de una tabla que refleja los efectos del viento en personas, dependiendo de las velocidades de las ráfagas. En este caso se habla de ráfagas de 2 a 10 segundos de duración y a una altura de entre 1 y 2 m (altura de las personas):

Sorprendente ¿no?. Este tabla nos indica que las personas del vídeo anterior están experimentando ráfagas de entre 18 y 20 m/s. La normativa Española tiene vientos de hasta 29 m/s pero como media en 10 minutos por lo que es de esperar que en esos 10 minutos haya ráfagas de vientos con velocidades mucho mas altas. 
Como complemento a la percepción de las velocidades del viento que barajamos en el cálculo de las estructuras, os adjunto la clásica escala de velocidades de viento Beaufort. Esta escala, publicada en 1806, es un intento de racionalizar las apreciaciones subjetivas del viento. Inicialmente estaba referida a fenómenos observables en el mar pero posteriormente se añadieron los observables en tierra quedando así:

Sin embargo, algunas veces, la importancia del viento no estriba en su fuerza, si no en los fenómenos dinámicos que puedan ocasionar en la estructura.
Cuando un cuerpo elástico esta inmerso en el seno de una corriente fluida, actúan sobre él tres tipo de fuerzas:
  • La fuerza elástica, que depende de la deformación del cuerpo
  • La fuerza aerodinámica, producidas por la acción del fluido sobre el cuerpo
  • Las fuerzas de inercia debidas  a la aceleración del movimiento de la estructura.
Del juego entre estas tres fuerzas, dependiendo de la importancia relativa de una frete a las otras, surgen los diversos tipos de inestabilidades de las cuales vamos a hablar solo de tres:

Galope:



Flameo:
Este fenómeno es típico de estudio detallado en puentes colgantes. Es el causante del derrumbe del Puente de Tacoma Narrows (puedes ver lo que le paso a este puente en el siguiente vídeo:


Bataneo:

Es aquella vibración que se produce por las turbulencias o perturbaciones no producidas por el obstáculo que las sufre, si no por otro cuerpo cercano.
Un ejemplo típico de bataneo de estela se produce entre rascacielos próximos en áreas urbanas, cuando la dirección del viento es tal que un edificio queda en la estela del otro.
En el siguiente vídeo podemos observar el modelado por ordenador de la interacción de las turbulencias creadas por unos rascacielos a otros próximos.


Fuente