08 octubre 2011

¿Qué es el efecto mariposa?

El aleteo de una mariposa en Pekín puede modificar los sistemas climáticos de Nueva York en los próximos meses.

Hacia 1960, el meteorólogo Edward Lorenz se dedicaba a estudiar el comportamiento de la atmósfera, tratando de encontrar un modelo matemático, que permitiera hacer predicciones climatológicas. Realizó distintas aproximaciones hasta que consiguió ajustar el modelo a la influencia de tres variables que expresan como cambian a lo largo del tiempo la velocidad y la temperatura del aire. Este modelo se concretó en tres ecuaciones matemáticas, bastante simples, conocidas, hoy en día, como modelo de Lorenz.

Pero, Lorenz recibió una gran sorpresa cuando observó que pequeñas diferencias en los datos de partida (algo aparentemente tan simple como utilizar 3 ó 6 decimales) llevaban a grandes diferencias en las predicciones del modelo. De tal forma que cualquier pequeña perturbación, o error, en las condiciones iniciales del sistema puede tener una gran influencia sobre el resultado final. De tal forma que se hacía muy difícil hacer predicciones climatológicas a largo plazo. Intentó explicar esta idea mediante un ejemplo hipotético. Sugirió que imaginásemos a un meteorólogo que hubiera conseguido hacer una predicción muy exacta del comportamiento de la atmósfera, mediante cálculos muy precisos y a partir de datos muy exactos. Podría encontrarse una predicción totalmente errónea por no haber tenido en cuenta el aleteo de una mariposa en el otro lado del planeta. Ese simple aleteo podría introducir perturbaciones en el sistema que llevaran a la predicción de una tormenta. De aquí surgió el nombre de efecto mariposa que, desde entonces, ha dado lugar a muchas variantes y recreaciones.

Se denomina, por tanto, efecto mariposa a la amplificación de errores que pueden aparecer en el comportamiento de un sistema complejo (otra consecuencia práctica la podemos encontrar en la bolsa de valores, las quinielas, etc). En definitiva, el efecto mariposa es una de las características del comportamiento de un sistema caótico, en el que las variables cambian de forma compleja y errática, haciendo imposible hacer predicciones más allá de un determinado punto, que recibe el nombre de horizonte de predicciones. 

Los modelos finitos que tratan de simular estos sistemas necesariamente descartan información acerca del sistema y los eventos asociados a él. Estos errores son magnificados en cada unidad de tiempo simulada hasta que el error resultante llega a exceder el ciento por ciento.

No hay comentarios: